Search results for "oxidative addition"

showing 10 items of 40 documents

Etherification of Functionalized Phenols with Chloroheteroarenes at Low Palladium Loading: Theoretical Assessment of the Role of Triphosphane Ligands…

2011

The present study highlights the potential of robust tridentate ferrocenylphosphanes with controlled conformation as catalytic auxiliaries in CO bond formation reactions. Air-stable palladium triphosphane systems are efficient for selective heteroaryl ether synthesis by using as little as 0.2 mol% of catalyst. These findings represent an economically attractive and clean etherification of functionalized phenols, electron-rich, electron-poor and para-, meta- or ortho-substituted substrates, with heteroaryl chlorides, including pyridines, hydroxylated pyridine, pyrimidines and thiazole. The etherification tolerates very important functions in various positions, such as cyano, methoxy, amino, …

Ligandchemistry.chemical_elementGeneral ChemistryCombinatorial chemistryOxidative additionCoupling reactionReductive eliminationchemistry.chemical_compoundTriphosphanechemistryPyridineOrganic chemistryThiazolePalladiumAdvanced Synthesis & Catalysis
researchProduct

On the mechanism of imine elimination from Fischer tungsten carbene complexes

2016

(Aminoferrocenyl)(ferrocenyl)carbene(pentacarbonyl)tungsten(0) (CO)5W=C(NHFc)Fc (W(CO)5(E-2)) is synthesized by nucleophilic substitution of the ethoxy group of (CO)5W=C(OEt)Fc (M(CO)5(1Et)) by ferrocenyl amide Fc-NH– (Fc = ferrocenyl). W(CO)5(E-2) thermally and photochemically eliminates bulky E-1,2-diferrocenylimine (E-3) via a formal 1,2-H shift from the N to the carbene C atom. Kinetic and mechanistic studies to the formation of imine E-3 are performed by NMR, IR and UV–vis spectroscopy and liquid injection field desorption ionization (LIFDI) mass spectrometry as well as by trapping experiments for low-coordinate tungsten complexes with triphenylphosphane. W(CO)5(E-2) decays thermally i…

tungstenIminemechanism010402 general chemistryPhotochemistry01 natural sciencesMedicinal chemistryReductive eliminationFull Research Paperlcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistryAmideNucleophilic substitutionlcsh:Science010405 organic chemistryChemistryOrganic ChemistryferroceneOxidative addition0104 chemical sciencesChemistrycarbene complexesAlkoxy groupPseudorotationlcsh:QimineCarbeneBeilstein Journal of Organic Chemistry
researchProduct

Unprecedented Palladium-Catalyzed Cross-Coupling Reaction of α-Bromo Sulfoxides with Boronic Acids

2003

[reaction: see text] A new Suzuki-type palladium-catalyzed reaction of boronic acids with alpha-bromo sulfoxides has been developed using a protocol similar to the well-documented reaction of boronic acids with aryl halides. Both cross-coupling and homocoupling processes were observed. The best yields in cross-coupling products were obtained when the presence of oxygen was carefully excluded using degassed solvents. The oxidative addition palladium complex intermediate could be isolated and characterized by X-ray single-crystal diffraction.

inorganic chemicalsChemistryArylOrganic Chemistrychemistry.chemical_elementHalideGeneral MedicineBiochemistryOxidative additionOxygenCoupling reactionCatalysischemistry.chemical_compoundSuzuki reactionPolymer chemistryOrganic chemistryPhysical and Theoretical ChemistryPalladiumOrganic Letters
researchProduct

Reactions of m-Terphenyl-Stabilized Germylene and Stannylene with Water and Methanol: Oxidative Addition versus Arene Elimination and Different React…

2015

Reactions of the divalent germylene Ge(ArMe6)2 (ArMe6 = C6H3-2,6-{C6H2-2,4,6-(CH3)3}2) with water or methanol gave the Ge(IV) insertion product (ArMe6)2Ge(H)OH (1) or (ArMe6)2Ge(H)OMe (2), respectively. In contrast, its stannylene congener Sn(ArMe6)2 reacted with water or methanol to produce the Sn(II) species {ArMe6Sn(μ-OH)}2 (3) or {ArMe6Sn(μ-OMe)}2 (4), respectively, with elimination of ArMe6H. Compounds 1–4 were characterized by IR and NMR spectroscopy as well as by X-ray crystallography. Density functional theory calculations yielded mechanistic insight into the formation of (ArMe6)2Ge(H)OH and {ArMe6Sn(μ-OH)}2. The insertion of an m-terphenyl-stabilized germylene into the O–H bond was…

areenin eliminaatiooxidative additionmetallyleenitreaktiomekanismiDFT laskutmetallylenesarene eliminationreaction mechanismhapettava additioDFT calculations
researchProduct

Synthesis, Coordination to Rh(I), and Hydroformylation Catalysis of New β-Aminophosphines Bearing a Dangling Nitrogen Group:  An Unusual Inversion of…

2002

Variants of the beta-aminophosphine L(1) [Ph(2)PCH(2)CH(Ph)NHPh] containing additional nitrogen donor functions have been prepared. These functions are branched off the C atom adjacent to the P atom, or the P atom itself. Ligand [Ph(2)PCH(o-C(6)H(4)NMe(2))CH(Ph)NHPh] has been obtained as a mixture of two diastereomers L(3A) and L(3B) by lithiation of L(2) [Ph(2)PCH(2)(o-C(6)H(4)NMe(2))] with n-BuLi followed by PhCH=NPh addition and hydrolysis. The diastereomers have been separated by fractional crystallization from ethanol. Ligand Et(2)NCH(2)P(Ph)CH(2)CH(Ph)NHPh has been obtained as a mixture of two diastereomers L(5A) and L(5B)(starting with P-Ph reductive cleavage of L(1) by lithium and s…

DenticityStereochemistrychemistry.chemical_elementLigands010402 general chemistry01 natural sciencesMedicinal chemistryCatalysisRhodiumInorganic Chemistrychemistry.chemical_compound[CHIM.COOR]Chemical Sciences/Coordination chemistryPhysical and Theoretical ChemistryDiethylamine[CHIM.ORGA]Chemical Sciences/Organic chemistry010405 organic chemistryLigandChemistryDiastereomer[CHIM.CATA]Chemical Sciences/CatalysisOxidative addition0104 chemical sciencesMetalsMixturesHydroformylationMolecular structureHydroformylationInorganic Chemistry
researchProduct

Influence of the Ligand of Palladium(0) Complexes on the Rate of the Oxidative Addition of Aryl and Activated Alkyl Bromides: Csp2 −Br versus Csp3 −B…

2017

Kinetic data by means of electrochemical techniques are used to characterize the reactivity of aryl bromides and activated alkyl bromides in oxidative addition to palladium(0) complexes generated from three precursors: Pd0(PPh3)4, {Pd0(dba)2 + 2 PPh3} and {Pd0(dba)2 + 2 P(o Tol)3} in DMF at 25 °C. It is established that, for the investigated substrates 1-6 and 7-11, the oxidative addition at the Csp3 Br bond is much faster than that at the Csp2 Br bond when the palladium(0) is ligated by two PPh3. This explains why the regioselectivity in Suzuki-Miyaura reactions performed from substrates bearing both Csp2 Br and Csp3 Br groups is in favour of the substitution at the Csp3 Br bond. It is in …

chemistry.chemical_classification010405 organic chemistryConcerted reactionLigandArylOrganic ChemistryRegioselectivitychemistry.chemical_element010402 general chemistryPhotochemistry01 natural sciencesMedicinal chemistryOxidative additionCatalysis0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundchemistryReactivity (chemistry)Physical and Theoretical ChemistryAlkylPalladiumChemCatChem
researchProduct

Synthesis and X-ray structure of cationic β-diimine palladium complexes containing π-methallyl ligand

2005

High yield of cationic palladium β-diimine complexes [(CH 2 (MeCNAr) 2 )Pd(η 3 -C 4 H 7 )][Y] (Ar = C 6 H 5 , Y = PF 6 (8); 2-Me-C 6 H 4 , Y = PF 6 (9); 2,6-Me 2 -C 6 H 3 , Y = PF 6 (10); 2,6-iPr 2 -C 6 H 3 , Y = PF 6 (11), Y = B(3,5-(CF 3 ) 2 -C 6 H 3 ) 4 (12)) have been obtained by an oxidative addition of the methallyloxyphosphonium salts (5, 6) to a preformed complex Pd(dba) 2 (7) in the presence of the β-iminoamine ligands (1-4). These complexes are thermally stable and have been characterized by 'H and 1 3 C{ 1 H} NMR as well as IR spectroscopy. The structure of the cationic allyl palladium complex (12) has been solved by X-ray crystallography.

ChemistryLigandOrganic ChemistryX-rayCationic polymerizationInfrared spectroscopychemistry.chemical_elementPhotochemistryBiochemistryMedicinal chemistryOxidative additionInorganic ChemistryYield (chemistry)Materials ChemistryPhysical and Theoretical ChemistryDiiminePalladiumJournal of Organometallic Chemistry
researchProduct

Spin forbidden chemical reactions of transition metal compounds. New ideas and new computational challenges.

2003

International audience; Many reactions of transition metal compounds involve a change in spin. These reactions may proceed faster, slower—or at the same rate as—otherwise equivalent processes in which spin is conserved. For example, ligand substitution in [CpMo(Cl)2(PR3)2] is faster than expected, whereas addition of dinitrogen to [Cp*Mo(Cl)(PMe3)2] is slow. Spin-forbidden oxidative addition of ethylene to [Cp*Ir(PMe3)] occurs competitively with ligand association. To explain these observations, we discuss the shape of the different potential energy surfaces (PESs) involved, and the energy of the minimum energy crossing points (MECPs) between them. This computational approach is of great he…

Spin states010405 organic chemistryChemistry02 engineering and technologyGeneral MedicineGeneral Chemistry021001 nanoscience & nanotechnology010402 general chemistryPhotochemistry01 natural sciencesChemical reactionPotential energyOxidative addition0104 chemical sciencesHybrid functional[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryTransition metalChemical physics[CHIM.COOR]Chemical Sciences/Coordination chemistryDensity functional theory0210 nano-technologySpin-½Chemical Society reviews
researchProduct

Precise Control and Consecutive Modulation of Spin Transition Temperature Using Chemical Migration in Porous Coordination Polymers

2011

Precise control of spin transition temperature (T(c)) is one of the most important challenges in molecular magnetism. A Hofmann-type porous coordination polymer {Fe(pz)[Pt(II)(CN)(4)]} (1; pz = pyrazine) exhibited cooperative spin transition near room temperature (T(c)(up) = 304 K and T(c)(down) = 284 K) and its iodine adduct {Fe(pz)[Pt(II/IV)(CN)(4)(I)]} (1-I), prepared by oxidative addition of iodine to the open metal sites of Pt(II), raised the T(c) by 100 K. DSC and microscopic Raman spectra of a solid mixture of 1-I and 1 revealed that iodine migrated from 1-I to 1 through the grain boundary after heating above 398 K. We have succeeded in precisely controlling the iodine content of {Fe…

PyrazineMagnetismCoordination polymerInorganic chemistrySpin transitionGeneral ChemistryBiochemistryOxidative additionCatalysisAdductMetalsymbols.namesakechemistry.chemical_compoundCrystallographyColloid and Surface Chemistrychemistryvisual_artsymbolsvisual_art.visual_art_mediumRaman spectroscopyJournal of the American Chemical Society
researchProduct

Computational study of the spin-forbidden H 2 oxidative addition to 16-electron Fe(0) complexes

2003

International audience; The spin-forbidden oxidative addition of H2 to Fe(CO)4, Fe(PH3)4, Fe(dpe)2 and Fe(dmpe)2 [dpe = H2PCH2CH2PH2, dmpe = (CH3)2PCH2CH2P(CH3)2] has been investigated by density functional theory using a modified B3PW91 functional. All 16-electron fragments are found to adopt a spin triplet ground state. The H2 addition involves a spin crossover in the reagents region of configurational space, at a significantly higher energy relative to the triplet dissociation asymptote and, for the case of Fe(CO)4·H2, even higher than the singlet dissociation asymptote. After crossing to the singlet surface, the addition proceeds directly to the classical cis-dihydride product. Only for…

010405 organic chemistryChemistry010402 general chemistryPhotochemistry01 natural sciencesOxidative additionDissociation (chemistry)0104 chemical sciencesInorganic Chemistry[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistrySpin crossoverMoleculePhysical chemistryDensity functional theory[CHIM.COOR]Chemical Sciences/Coordination chemistrySinglet stateDihydrogen complexGround state
researchProduct